

Cylinder Wake Benchmark Specifications

Experimental Setup and Performance

Stefan G. Siegel Kelly Cohen Tom McLaughlin

Why a Benchmark?

- Feedback Flow Control requires a multidisciplinary approach
- Lack of effective "plant" models that enable design of real-time estimation and control strategies
- For control community, investment in experimental infrastructure is substantial in terms of time, money and manpower

Sketch of Setup

Benchmark Goals

- Develop a benchmark that will enable the control specialist to engage in the problem without necessarily setting up an in-house multi-disciplinary team.
- Provide a forum for the application of a variety of control design methodologies.
- Develop a single experimental system, based on the existing infrastructure at USAFA, which will serve as an impartial T&E center for evaluating different strategies.
- Benchmark based on water-tunnel experiment of the cylinder wake, capable of translational motion, with real-time PIV for multi-sensor study.

Experiment Objectives

- Create a cylinder wake experiment suitable for feedback control including sensors, actuators and the model itself
- Provide Hardware and Software to integrate the experiment with MATLAB/SIMULINK

USAFA Circular Cylinder Wake Benchmark Specs

- Circular Cylinder Wake at Re = 120,
 St_n ~ 0.16
- Actuation through cylinder translation normal to mean flow
- Multi sensor capability
- Controller implementation in SIMULINK

$$Re = \frac{U_{inf} \cdot D}{v};$$

D = Cylinder Diameter

U_{inf} = Freestream Velocity

v = Kinematic Viscosity

$$v_{H_2O} = 1 \cdot 10^{-6}$$

$$v_{Air} = 15 \cdot 10^{-6}$$

$$St = \frac{f \cdot D}{U_{\text{inf}}}$$

f = Frequency

Cylinder Model

- Cylinder Model: D = 3.97 mm
- Span: L = 381 mm
- => L/D ~ 95
- $f_n = 1.22 Hz$
- Vertical Travel: +/- 4mm
- Bandwidth Actuators50Hz +

Water Tunnel Specs

- Eidetic Model 2436 Water Tunnel
 - U_{inf} = 25 mm/s to 300 mm/s
 - Flow Speed at Re = 120: ~30 mm/s
 - Natural Vortex Shedding Frequency ~1.22 Hz

Real Time PIV System

- Pro's and Con's of Particle Image Velocimetry
 - + Many sensor locations
 - + Non-intrusive
 - + Separate velocity components
 - + Easy to calibrate and position
 - + moderately expensive
 - Limited time resolution
 - No real-time system commercially available, only off-line processing
- Currently, the only non-intrusive multi sensor capable measurement technique

Cylinder Wake Benchmark Specifications, August 2002

Benchmark Computer System

Software Layout

Cylinder Wake Benchmark Specifications, August 2002

Simulink Template

The Upper portion was used to benchmark the entire RT PIV system including download to the DSpace system.

PIV Tradeoffs

- Interrogation Area:
 - Large Interrogation Area -> small displacement measurement error. BUT: Small spatial resolution (i.e. few vectors throughout field of view
- Field of View
 - Large FOV shows entire flow field. BUT: Small spatial resolution, little detail on small flow structures

Typical PIV settings

- Delta T ~ 1 ms
- Particle displacement 4 8 pixels
- Interrogation Area 32 x 32 pixels
- Field of View 5 8 cylinder diameters
- => Velocity error about 2-5% U_{inf}
- => 30 x 30 velocity vectors
- => Spatial resolution (distance between vectors) about 0.16 – 0.26 cylinder diameters (with no overlap of interrogation areas)

PIV Performance Limits

- Camera Resolution: 1008 x 1016 pixels
- Maximum Frame Rate: 30 Hz
 - > 15 Hz Sampling of the flow field since two images are cross correlated
- Time delay to transfer Images from Camera to PC Memory: About 50 ms
- Time delay to correlate 6 Interrogation Areas and transfer data to DSpace RT Processor: 20 ms
- => total measured time delay 70 ms with a jitter of
 +/- 2 ms

Remarks on PIV Performance

- Larger interrogation areas will increase time delay
- More interrogation areas will increase the time delay
- We are working on quantifying these effects, the results will be presented at the AIAA meeting in Reno, 2003 (AIAA 2003-0920)
- Meanwhile, attempt to design a controller that is as robust as possible with respect to time delays

How to participate

- Develop a Control Algorithm.
- Determine number and placement (x, y) of your sensors.
- Make sure your controller is robust enough to tolerate the measurement time delay (Order of 10% of a shedding cycle).
- Schedule a visit to our lab and run your controller!

Contact, Questions???

- Experimental Details:
 - Stefan Siegel
 - Stefan.siegel@usafa.af.mil, (719) 333-9080
- Controls Issues:
 - Kelly Cohen
 - Kelly.cohen@usafa.af.mil, (719) 333-9081
- Management, Finances:
 - Tom McLaughlin
 - Tom.mclaughlin@usafa.af.mil, (719) 333-2613